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A B S T R A C T

The traditional method for determining the Marshall stability (MS) and Marshall flow (MF) of asphalt pavements
is laborious, time consuming, and costly. This study aims to predict these parameters using explainable machine-
learning techniques. A comprehensive database comprising 721 hot mix asphalt (HMA) data points was estab-
lished, including variables such as aggregate percentage, asphalt content, and specific gravity. Models were
constructed using the PyCaret Python library, and their performance was assessed using metrics such as the mean
absolute error (MAE) and coefficient of determination (R2). The CatBoost regression model outperformed the
other models, achieving R2 values of 0.835 and 0.845 for MS and MF, respectively. Additionally, Shapley values
were used to quantify the variable effects on the predictions. This approach enables the efficient preselection of
design variables, reducing the need for extensive laboratory testing and promoting sustainable construction
practices.

1. Introduction

Pavement performance and longevity are significantly influenced by
mechanical and volumetric mix characteristics, which are determined
by the mix design. These properties are fundamentally related to field
defects, such as aging, rutting, and reflective cracking, indicating the
potential of pavements for permanent deformation [43]. Currently, the
Marshall, Hveem, and Superpave mix designs are the most popular
methodologies employed in many countries [19]. These methods differ
in their compaction styles, specimen sizes, and mechanistic testing
procedures. While the Superpave mix design has gained popularity in
recent years, the Marshall method remains a preferred choice in Jordan
due to its historical application and ease of use [21]. However, these
methods are labor intensive, rigorous, and expensive. For instance, a
typical Superpave mixture design can take approximately 7.5 working
days, while the Marshall mix design can take approximately four
working days [37]. Both methods required the preparation of multiple
replicates with different percentages to determine the design mix for-
mula (DMF). Given the extensive experimental work required for
defining the DMF of asphalt mixes, prediction-based techniques are
highly advantageous because they offer significant time savings,
particularly when material sources or testing boundaries remain

unchanged.
With the increasing need for efficiency in pavement design, numer-

ical simulations, such as the discrete element method (DEM) and finite
element method (FEM), and soft computing techniques, such as machine
learning, have emerged as valuable tools for predicting mix performance
[28]. For example, DEM has been employed to predict Marshall pa-
rameters for virtual specimens, estimating an asphalt binder content
between 4.3% and 7.5%, with a maximum binder content of 5.3% [27].
Similarly, the DEM has been used to predict the volumetric properties of
HMA, such as voids in mineral aggregates (VMA) [12,20,45]. Machine
learning is a powerful data analysis method that automates the con-
struction of analytical models and offers significant potential for pre-
dicting the Marshall mix parameters. Among these approaches, machine
learning has proven to be a powerful method for automating data
analysis and constructing predictive models, especially for estimating
Marshall mix parameters [4,5,14], whereas others have applied
machine-learning techniques to estimate various material properties
relevant to pavement design, such as surface roughness and cutting force
[28,39].

Studies have also employed machine-learning algorithms to predict
the engineering and physical characteristics of asphalt mixtures [29,30]
and soft computing techniques, such as artificial neural network, genetic
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algorithms, and fuzzy logic [31]. For example, researchers have used
specific design inputs from Marshall mix designs, such as Va, density,
and VMA, to predict the MS, MF, and Marshall quotient (MQ) [2].
Explainable machine-learning techniques provide semantically inter-
pretable tools that can create knowledge resources and help understand
and interpret complex models [6,17,34]. These techniques are valuable
in pavement engineering, and understanding the influence of various
mix parameters on performance outcomes is crucial. Physics-informed
machine-learning models, which integrate physical laws and princi-
ples into the learning process, can express results more clearly with
fewer rules [22]. Knowledge graphs and ontologies are key technologies
for building explainable machine-learning models, facilitating both
human and machine understanding of data [25].

In pavement engineering, several studies have applied machine
learning to predict various properties of asphalt mixtures, including
surface roughness and cutting force [28,39]. Additionally, soft
computing techniques, such as artificial neural networks, genetic algo-
rithms, and fuzzy logic, have been widely used to predict the engi-
neering and physical characteristics of asphalt mixtures [29–31]. For
example, researchers have utilized design inputs from Marshall mix
designs, including air void content (Va), density, and VMA, to predict
Marshall stability (MS), Marshall flow (MF), and Marshall quotient (MQ)
[2].

However, while traditional machine-learning methods offer accurate
predictions, they often lack transparency in their decision-making pro-
cesses. This is where explainable machine-learning techniques, such as
SHapley Additive exPlanations (SHAP), come into play. These methods
provide semantically interpretable models, enabling users to understand

the contribution of each input variable to the output prediction [6,17,
34]. In pavement engineering, explainable models are particularly
valuable because they help engineers interpret how various mix pa-
rameters affect performance outcomes. Furthermore, physics-informed
machine-learning models, which integrate physical laws and princi-
ples into the learning process, can provide clearer and more interpret-
able results [22].

To bridge the gap between complex machine-learning models and
practical applications, this study aims to leverage explainable machine-
learning techniques embedded in the PyCaret Python library to predict
Marshall performance parameters. By utilizing a comprehensive data-
base comprising 721 HMA data points from 230 asphalt mixes, variables
such as aggregate percentage, asphalt content, and specific gravity were
incorporated into the models. Several machine-learning algorithms,
including CatBoost, LightGBM, and ExtraTrees, were employed, and
their performance was evaluated using metrics such as mean absolute
error (MAE) and coefficient of determination (R2). Among these, the
CatBoost regression model demonstrated superior performance,
achieving R2 values of 0.835 for MS and 0.845 for MF.

This study’s findings provide a robust framework for the efficient
preselection of design variables, promoting sustainable construction
practices and advancing the state-of-the-art in pavement engineering.

2. Methodology

This section presents the research methodology framework and dis-
cusses the data description and model building.

Research framework: The study framework is illustrated in Fig. 1.

Fig. 1. Research Methodology.
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The investigation commenced with the collection of data from 230
construction and maintenance projects in Jordan that utilized bitumen
60/70. This resulted in a comprehensive dataset comprising 721 data
points. From these mixes, several key variables were extracted,
including MS, MF, percentage of aggregates in the total mix (Ps), per-
centage of asphalt content (Pb), bulk specific gravity of the compacted
mixture (Gmb), maximum specific gravity of the mix (Gmm), specific
gravity of the aggregate (Gsb), effective specific gravity of the aggregate
(Gse), percentage of VMA, percentage of air voids (Va), percentage of
coarse aggregate to fine aggregate ratio (CA/FA), and filler-to-bitumen
ratio (f/Pb).

Data preprocessing: To minimize the complexity of the developed
models and mitigate data anomalies, preprocessing and data division
were implemented. This process encompassed the identification of
outliers and verification that the data were free from abnormal values.
Outliers were detected and addressed using the interquartile range (IQR)
method to prevent adverse effects on model performance. A summary
table was generated to evaluate the distribution of variables and identify
any anomalies. It is noteworthy that the dataset utilized in this study was
derived from real mixes, and consequently, no missing values were
imputed because the data were complete. This approach ensures that the
predictions generated by the machine-learning models reflect real-world
conditions.

Multicollinearity was assessed using the Spearman rank correlation
matrix, and variables exhibiting high correlations (R2 > 0.85) were
eliminated to prevent multicollinearity issues from compromising model
performance. This procedure ensured that the remaining variables
incorporated in the models were independent and contributed sub-
stantively to the prediction tasks.

Model building: The PyCaret library in Python was used to
construct two machine-learning models: one for predicting Marshall
stability (MS) and the other for predicting Marshall flow (MF). The
PyCaret framework provides a wide range of machine-learning algo-
rithms, allowing for the comparison of various models. In this study,
several machine-learning models were evaluated, including CatBoost,
LightGBM, XGBoost, and ExtraTrees.

The rationale for selecting these models is based on several factors:

• CatBoost was chosen for its ability to handle categorical features
without explicit encoding and its strong performance with relatively
small datasets.

• LightGBM and XGBoost are both gradient-boosting algorithms
known for their efficiency in large datasets and their high accuracy.
These models are also highly regarded for their ability to handle
missing values (if any) and perform robustly in various regression
tasks.

• ExtraTrees was selected due to its capacity to reduce overfitting by
using multiple decision trees and its ability to average predictions,
thereby improving overall predictive accuracy.

Other models, such as random forest and support vector machines
(SVM), were also tested but did not perform as well in terms of both
predictive accuracy and computational efficiency compared to the
models mentioned above. As such, CatBoost, LightGBM, XGBoost, and
ExtraTrees were chosen as the final models for further evaluation.

Each model’s performance was assessed using several evaluation
metrics, including the mean absolute error (MAE), mean squared error
(MSE), root mean squared error (RMSE), and coefficient of determina-
tion (R2). To ensure the robustness of the results, 10-fold cross-
validation was used to validate the models.

Model evaluation: The predictive performance of the models was
evaluated using a K-fold cross-validation approach with 10 folds. The
models were ranked according to their performance, and the top-
performing models were chosen for further analysis. To ensure that
the models did not suffer from multicollinearity, residual plots were
used and the correlation between the predicted and actual data was

plotted to verify the accuracy of the predictions.
Explainability: SHAP (SHapley Additive exPlanations) values were

used to quantify the impact of each variable on the predicted MS and
MF. SHAP values provide insights into the contribution of each feature
to the prediction, offering a deeper understanding of the decision-
making process of the model. TreeSHAP was used to visualize feature
attribution, showing how each feature value either increased or
decreased the prediction accuracy.

2.1. Model structure and modeling technique

The model parameter selection is an initial and significant step in the
development of appropriate models. Marshall properties depend on
several parameters, including Ps, Pb, Gmb, Gmm, Gsb, Gse, Va, VMA,
CA/FA, and f/Pb. In the previous step, we removed the multicollinearity
problem because the Marshall parameters were dependent on Pb, Gmb,
Gmm, Gsb, Gse, VMA, CA/FA, and f/Pb.

2.1.1. Model development using PyCaret
Modeling was performed using the PyCaret package in Python.

PyCaret compared different regression models based on the parameters
listed above [3]. PyCaret is a Python-based library that consolidates
various machine-learning frameworks and libraries for both regression
and classification tasks. The library includes more than 20 models [3]. It
simplifies the machine-learning workflow by providing functionalities
for model training, hyperparameter optimization, model selection, and
deployment. The library offers a user-friendly interface for efficiently
experimenting with different machine-learning algorithms and tech-
niques [50]. It has also been utilized in optimizing hyperparameters for
decision-tree models predicting gold nanorod sizes from spectra,
showcasing its effectiveness in enhancing model performance through
automated parameter tuning [36].

PyCaret has more than 20 machine-learning models; in our analysis,
the best five models were the CatBoost regressor, ExtraTrees regressors,
light gradient boosting, extreme gradient boosting, gradient-boosting
regressors, and random forest regressors. An explanation for these
models is presented below.

2.1.1.1. CatBoost regressor. CatBoost builds on decision trees by opti-
mizing a loss function using gradient-boosting methods. It applies a
unique ordered boosting technique in which the new tree is built based
on the old prediction in addition to a new learning rate being added to
the prediction function [10,24].

2.1.1.2. ExtraTrees regressor. The ExtraTrees regressor builds multiple
decision trees and uses averaging to improve the predictive accuracy
and control the overfitting from the different trees. It differs from
random forests in how it splits nodes. In essence, each tree h(x,Θk),
where Θk are the randomly chosen parameters for tree k, is built on a
random subset. The final prediction is an average of all individual tree
predictions. The general equation for the ExtraTrees regressor is
described in Eq. 1 [24].

yi =
1
N

∑N

N=1
h(x,Θk), (1)

where yi is the predicted value for y.

2.1.1.3. Light gradient-boosting machine (LightGBM). LightGBM uses
gradient-based, one-sided sampling and exclusive features that bundle
to process large datasets efficiently. It grows trees “leaf-wise.” In fact,
LightGBM adds predictions to the new iteration. The general equation
for LightGMB is presented in Eq. 2 [36].

new prediction = old prediction+ η × ft(x) (2)

I. Asi et al. Transportation Engineering 18 (2024) 100282 

3 



where η is the new learning rate and ft(x) is the new learning rate.

2.1.1.4. Extreme gradient boosting (XGBoost). XGBoost improves on
standard gradient boosting through systems optimization and en-
hancements such as handling missing values and pruning trees. The
general equation of the XGBoost was shown in Eq. 2.

2.1.1.5. Gradient-boosting regressors. Gradient-boosting constructs ad-
ditive models in a forward stage-wise fashion; it allows for the optimi-
zation of arbitrary differentiable loss functions. Each new tree makes up
for the shortcomings of the existing combined model. Similar to the
results of other boosting techniques, the new predicted value is built
based on the previous predicted value after adjusting the predicted value
to minimize the loss function.

2.1.1.6. Random forest regressors. Random forest regressors combine
multiple trees to reduce the risk of overfitting and to increase the
model’s predictive accuracy. Each decision tree in the forest considers a
random subset of features when forming questions and has access only
to a random set of the training data points. The general equation of
random forest is shown in Eq. 3.

yi =
1
N

∑N

N=1
treei(x) (3)

The expressions reflect the basic operational mechanics of these
ensemble methods, where the model successively refines predictions or
classifications through an ensemble of simpler, weaker models, typically
decision trees.

2.2. Hyperparameter optimization

To enhance the predictive accuracy and efficiency of our machine-
learning models, an extensive hyperparameter optimization was con-
ducted using PyCaret’s robust suite of automation tools. This critical
phase involved the following:

1. Selection of hyperparameters: A comprehensive range of hyper-
parameters was considered for tuning, including learning rates,
depth of trees, and regularization coefficients. This selection was
tailored to each model to explore the best combinations to improve
performance.

2. Optimization technique: We employed grid search and random
search methods facilitated by PyCaret, allowing us to systematically
evaluate various parameter combinations. These techniques pro-
vided a structured approach to navigating the hyperparameter space
efficiently.

3. Evaluation metrics: The optimization process was guided by key
performance to reduce the RMSE. This reduction helped in identi-
fying the configurations that yielded the most predictive and robust
models.

4. Results and selection: The best-performing parameters were
selected based on their performance metrics during cross-validation
stages. This approach ensured that our models were not only accu-
rate but also generalizable to new, unseen data.

2.3. Evaluation criteria and performance measures

The prediction performances of the models were assessed using six
indicators and visual plots. The performance indicators included MAE,
MSE, RMSE, (R2), RMSLE, and MAPE. These indicators were estimated
using Equations 4 through 9.

MAE =

∑n
i=1|yi − ŷi|

n
(4)

MSE =

∑n
i=1(yi − ŷi)2

n
(5)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)2

n

√

(6)

R2 = 1 −
RSS
TSS

(7)

RMSLE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(log(ŷi + 1) − log(yi + 1))2

√

(8)

MAPE =
100%
n

∑n

i=1

|yi − ŷi|
yi

(9)

In Equations 4 through 9, yi is the actual value, ŷi is the predicted
value, n is the number of training or testing datasets, RSS is the residual
sum of squares, and TSS is the total sum of squares. The maximum R2

value was as high as 1.00. It can also be negative when the prediction
performance is poor. Therefore, the closer this value is to 1.00, the
higher the prediction performance of the model. The visual plots
included residual plots to ensure that the model did not exhibit multi-
collinearity, by having a random residual of approximately zero.

2.4. K-fold cross-validation

Cross-validation (CV) was used to assess the generalization perfor-
mance of the prediction model. It is more stable and comprehensive than
the basic training–test split method. One of the most common CV
methods is the k-fold CV. The number k is decided by the user and is
commonly chosen as 5 or 10 [33]. The CV embedded in PyCaret was
used in this study. In PyCaret, CV uses 10 folds to validate the model.

2.5. Explainable machine learning

Explainable machine learning (XML) aims to generate models that
provide precise predictions along with transparency and interpretability
in decision-making processes [42]. The primary objective of XML is to
boost user trust by elucidating the reasoning behind machine-learning
predictions [8]. This transparency is of paramount importance in
fields such as healthcare, finance, manufacturing, and transportation,
where decisions have significant real-world impacts [35]. Central to
XML are explainable artificial intelligence (XAI) techniques, which
enhance model interpretability and transparency [49]. XAI methods
enable researchers to delve into the inner workings of complex models
and comprehend the influence of individual features on predictions
[47]. Explaining feature importance in predictions is a primary objective
of SHAP (SHapley Additive exPlanations), a well-established method in
the field [40]. The use of XAI techniques such as SHAP significantly
improves the interpretability and trustworthiness of models [18]. The
Morris method, also known as the one-at-a-time method, is a global
sensitivity analysis technique in which only one input is adjusted per
run. This approach is relatively fast, requiring fewer model executions
compared to other sensitivity analysis algorithms. However, it has lim-
itations in distinguishing between non-linearities and interactions
among inputs. The Morris method is primarily used for screening pur-
poses to identify which inputs are significant enough to warrant more
detailed analysis [32]. A lower convergence index indicates that the
sensitivity indices are stabilizing, suggesting that a sufficient number of
trajectories have been used. A higher convergence index implies that
more trajectories are needed for the sensitivity analysis to converge.

3. Results

In this section, explanatory data analysis, variable selection, and
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Table 1
Study parameter statistics summary.

Variable (unit) Mean Std Min 25% 50% 75% Max Coef of variation Skewness Kurtosis

Pb (%) 4.82 0.95 3.00 4.00 5.00 5.50 7.00 0.20 0.13 –0.72
Gmb (g/cm3) 2.40 0.15 2.18 2.34 2.41 2.46 4.40 0.06 9.37 121.69
Gmm

(g/cm3)
2.51 0.08 2.30 2.45 2.52 2.57 2.71 0.03 –0.18 –0.69

Va (%) 4.64 2.29 0.30 2.70 4.30 6.40 11.10 0.49 0.38 –0.78
VMA (%) 14.51 0.81 13.00 14.00 14.40 15.00 19.00 0.06 0.77 1.50
Stability (kg) 1652.7 266.7 660.0 1452.0 1625.0 1826.0 2482.0 0.16 0.28 0.38
Flow (mm) 3.00 7.96 1.44 2.24 2.62 3.05 4.5 2.66 25.33 658.48
Gse

(g/cm3)
3.10 4.37 2.53 2.65 2.75 2.83 55.40 1.41 11.87 139.07

Gsb
(g/cm3)

2.69 0.08 2.48 2.65 2.72 2.74 2.81 0.03 0. 12 15.3

f/Pb (ratio) 0.94 0.32 0.15 0.73 0.93 1.14 1.71 0.34 –0.07 –0.26
CA/FA

(ratio)
1.13 0.27 0.43 1.04 1.13 1.24 2.68 0.24 0.71 7.38

Fig. 2. Explanatory Variable Distribution.
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models results, model performance, and explainable machine-learning
results are presented.

3.1. Explanatory description analysis and variable selection

The first task in model building is to obtain a statistical summary of
the variables and output correlation matrix. Two models were generated
to predict each of the Marshall parameters (MS and MF). Table 1 shows a
statistical summary of the variables and allows for an understanding of
variable variation.

Table 1 lists the study variables, mean, median, standard deviation,
coefficient of variance (dispersion), minimum and maximum (data ex-
tremes), skewness, and kurtosis (shapes of distribution), which make the
interpretation of the datasets relatively straightforward. The numbers in
Table 1 provide an understanding of the common material indices that
influence the MS and MF. MS was found to range from 660 to 2482, and
the MF range was found to range from 1.44 to 4.5. The distribution of all
variables is shown in Fig. 2.

Fig. 2 displays the distributions of many crucial factors that are
crucial for the Marshall mix design. Each variable is shown using his-
tograms and kernel density estimates. The variable Pb, which represents
the percentage of bitumen content, showed a uniform distribution
roughly at a peak at value of 5%. The bulk specific gravity of the mix
(Gmb) exhibited a distribution that is skewed to the right, indicating
that most values were close to the lower values. This characteristic has
the potential to affect the compaction and durability of the mix [13]. In
contrast, the maximum specific gravity of the mix (Gmm) had a bimodal
distribution, which signifies the presence of different aggregate or mix
types that can impact the voids filled with asphalt and air voids (Va)—
hence, altering the HMA performance [9]. The presence of many modes
in the distribution of Va (air voids in the mix) indicated that the air void
content varied, which in turn affected the mix’s susceptibility to mois-
ture damage and its durability [26]. The VMA exhibited a distribution
that was skewed to the left, which is normally advantageous because it
allows sufficient room for binder. However, if the VMA is too high, it
may result in bleeding [38]. The presence of a multimodal distribution
in Gsb and the effective specific gravity of aggregate (Gse) suggested
that there is variability in the characteristics of the aggregate. These
characteristics include physical ones such as porosity, permeable voids,
shape, and texture, as well as chemical characteristics including the

mineralogy and the composition of the aggregate particles, which are
highly dependent on aggregate type and source. This variability can
have an impact on the stability and compaction of the mixture, as noted
by Fadhil et al. [11] and Yzenas [48]. The CA/FA ratio had a distribution
with two distinct peaks, indicating the presence of different aggregate
forms that enhanced stability but may necessitate the use of more binder
for workability [16]. The F/b ratio was distributed normally, which is
crucial for attaining the necessary stability and longevity of the mixture
mix [7,15]. After the distribution of variables was plotted, variable se-
lection was performed using the correlation matrix.

The second step involved the calculation of the Spearman rank co-
efficient matrix, which describes the strength of the relationship be-
tween variables. In the current study, models were generated for both
MS and MF. Previous research demonstrated that integrating too many
inputs with a low correlation with the desired output degrades model
performance as complexity increases [1,44]. Multicollinearity, caused
by the dependency of the input parameters, is a prevalent challenge in
applications that employ machine-learning algorithms [41]. This can
weaken the relationships between variables and reduce the strength of
the models under development. To avoid this problem, it is recom-
mended that the R-squared value between the two input parameters be
smaller than 0.85 [23,46].

The correlation matrices for MS and MF are shown in Fig. 3(a) and 3
(b), respectively.

3.2. Modeling results

The Marshall performance was modeled by testing all PyCaret
models. The PyCaret results were sorted using coefficients of determi-
nation. The five best models and their indicators are listed in Tables 2
and 3 for the testing dataset to predict MS and MF, respectively.

Tables 2 and 3 show that the CatBoost regressor testing results
overcame the indicators of the different models to predict MS and MF.
Intuitively, the best model is the one that had the lowest MAPE, MSE,
RMSE, and RMSLE and the highest R2. Model multicollinearity was
checked using the residual plots for training and testing the dataset.
Residual plots for both MS and MF are shown in Fig. 4(a) and 4(b) for MS
and MF, respectively.

The following text illustrates the residuals for the CatBoost regressor
when predicting MS and MF. The residual plots offer an evaluation of the

Fig. 2. (continued).
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model’s performance by examining the errors in its predictions for both
the training and test datasets. The scatter plot depicts the residuals in
relation to the predicted values, where the blue and green dots represent
the training and test data residuals, respectively. The horizontal lines at
zero on the plots indicate perfect predictions. The model exhibits high R2

values, with 0.988 and 0.994 for the training data in MS and MF,
respectively. However, the R2 values for the testing data were 0.794 and

0.845 for MS and MF, respectively. Both subplots indicate that the re-
siduals are symmetrically distributed around zero, suggesting that the
models’ predictions are unbiased and that the errors are normally
distributed. The consistent spread of residuals across predicted values
suggests that the models’ errors have a constant variance, an advanta-
geous trait. Although some outliers with larger residuals are present, the
overall pattern indicates that the model performed well, maintaining a

Fig. 3. Correlation Matrix: (a) Stability Correlation Matrix, (b) Flow Correlation Matrix.

Table 2
Machine-learning model performance to predict Marshall stability for testing dataset.

Model MAE MSE RMSE R2 RMSLE MAPE

CatBoost CatBoost regressor 91.8499 17,113.3635 128.6616 0.793 0.0818 0.0576
XGBoost Extreme gradient boosting 95.0633 20,336.5004 138.7943 0.7253 0.0881 0.0596
LightGBM Light gradient-boosting machine 106.9091 22,394.9875 147.4065 0.6914 0.0931 0.0668
ET ExtraTrees regressor 106.8980 23,770.2273 152.7934 0.6662 0.0958 0.0662
GBR Gradient-boosting regressor 120.8133 26,273.4639 159.8434 0.6362 0.1001 0.0759
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homoscedastic error distribution and providing reliable predictions.
Both MS and MF k-fold distributions are shown in Fig. 5.

Fig. 5 shows the MS and MF model CV results, in which the model
accuracy increased with an increase in the training dataset. Fig. 5(a)
shows that the learning curve for the training score remained consis-
tently high (near 1.0) across all training instances, indicating an excel-
lent fit to the training data but suggesting potential overfitting. The CV
score for this model steadily increased from around 0.4 to about 0.8 as
more training instances were added, indicating improved performance
on unseen data. In contrast, the learning curve for predicting MF in Fig. 5
(b) shows that the training score started at around 0.9 and gradually
increased to just above 0.95, suggesting a slightly higher bias but better

overall generalization. The CV score for the MF prediction model also
steadily increased from around 0.7 to about 0.85 with more training
data. Both models benefited from additional training data, with CV
scores consistently improving, underscoring the importance of sufficient
training instances for enhancing model performance. After validating
the model, we estimated the model testing error against the predicted
value. The prediction error results are shown in Fig. 6.

Fig. 6 shows the correlation between the predicted and actual values.
The coefficient of determination was computed and found to be 0.83 for
stability prediction and 0.845 for flow prediction, indicating a highly
correlated value. Another measure was used to model the importance of
variables using Morris sensitivity analysis.

Table 3
Machine-learning model performance to predict Marshall flow.

Model MAE MSE RMSE R2 RMSLE MAPE

CatBoost CatBoost regressor 0.1393 0.0394 0.1947 0.8450 0.0525 0.0537
LightGBM Light gradient-boosting machine 0.1570 0.0480 0.2162 0.8411 0.0576 0.0598
GBR Gradient-boosting regressor 0.1721 0.0529 0.2273 0.8264 0.0611 0.0660
XGBoost Extreme gradient boosting 0.1508 0.0525 0.2253 0.8237 0.0606 0.0576
ET ExtraTrees regressor 0.1670 0.0597 0.2406 0.7997 0.0649 0.0642

Fig. 4. Model Residuals for Training and Testing Data: (a) Predicted Stability, (b) Flow Prediction.
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3.3. Explainable machine-learning results

The important variables are shown in Fig. 7. The convergence index
indicates that the model is stable. Moreover, the results indicate that the
VA and the CA/FA ratio had the strongest impact on MS prediction.

Fig. 7 reveals the relative importance of various input variables on
the model outcomes, providing numerical sensitivity indices. As shown
in Fig. 7(a), Va stood out as the most influential variable with a sensi-
tivity index of approximately 0.50. Ps and Pb followed closely with
sensitivity indices of around 0.30 and 0.28, respectively. CA/FA and
Gmb exhibited moderate sensitivity, with indices of approximately 0.22
and 0.18. Other variables (f/fb, Gsb, VMA, Gse, and Gmm) had lower
sensitivity indices, ranging from 0.10 to 0.15, indicating a lesser impact
on the MS compared with Ps and Pb.

As shown in Fig. 7(b), Va remained the most sensitive variable, with
a significantly higher sensitivity index of approximately 120. CA/FA
followed, with an index of around 100, indicating a substantial impact
on the model. Gmb, f/fb, and Gmm also showed considerable sensitivity,

with indices of approximately 80, 75, and 70, respectively. The
remaining variables —VMA, Gse, Pb, Ps, and Gsb—exhibited lower
sensitivity indices, ranging from 40 to 60. The convergence indices of
0.095 and 0.097 confirmed the stability and reliability of these sensi-
tivity measurements, underscoring the critical role of Va, Ps, Pb, CA/FA,
and Gmb in influencing MF. A more sophisticated plot showing the
interaction between different variables and MS was constructed using
SHAP, as shown in Fig. 8.

Fig. 8(a) shows the impact of changing the different features on MS.
It can be seen that the increases in Gsb, Gmb, and Gmm are associated
with an increase in MS. Additionally, increases in Gse, CA/FA, VMA, and
Gse levels were associated with a decrease in MS. A more detailed
investigation of the interaction between the four most important fea-
tures and MS and MF is shown in Figs. 9 and 10 for MS and MF,
respectively.

The interdependency plots for the variables Va, Pb, Ps, and CA/FA in
relation to MS (average response) provide insightful visualizations of
how these variables influence the stability measure. Each subplot

Fig. 5. 10-Fold Cross-Validation Results: (a) Stability Model, (b) Flow Model.
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Fig. 6. Model Performance: (a) Stability Prediction, (b) Flow Prediction.

Fig. 7. Morris Sensitivity Results: (a) Marshall Model Results, (b) Flow Model Results.
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consists of a line graph showing the trend of the average response across
different values of the variables and a histogram illustrating the density
distribution of these values. For Va, the line plot indicates that MS
remained relatively stable with slight variations, but there is a minor
downward trend as Va increased. The histogram shows that values of
around 1.97–2.81 and 5.32–6.15 are more frequent, suggesting that
these ranges are significant in the dataset. Similarly, the Pb plot shows a
generally stable average response, with slight decreases as the variable
increases and higher densities in the range of 4–5.5. For Ps, the average
response is consistent, with minor declines noted toward higher values,
and the histogram highlights higher frequencies of around 94.5–95.5.
Finally, the CA/FA plot shows a stable response, with minor dips around
the value of 1. The histogram indicates more frequent occurrences in the
range of 0.946–1.14, suggesting that these ranges are critical.

The interdependency plots for MF reveal how different varia-
bles—namely, Va, CA/FA, bulk Gmb, and f/fb ratio, influenced the
average MF response. For Va, the average MF showed a negative cor-
relation, decreasing from around 3 to 2 as Va increased, with higher
density observed in the ranges 1.97–2.81 and 5.32–6.15. The CA/FA
ratio plot indicates a relatively stable average MF between 2.5 and 3,
with a minor dip around 1.2, and higher densities between 0.965 and
1.16. In the case of Gmb, the average MF showed a slight downward
trend from 2.5 to 3 as Gmb increased, with a significant density peak at
2.33. Finally, for f/fb, the average MF remained stable, at around 2.5–3
across different ratios, with higher densities between 0.992 and 1.13.
The plots collectively highlight the subtle influences of these variables
on MF, which is essential for optimizing asphalt mix designs by identi-
fying prevalent conditions and understanding their impact on flow
characteristics. The effects of the most important features on the pre-
dicted MS and MF are shown in Figs. 11 and 12, respectively.

Fig. 11 shows the SHAP plot for predicting MS. The figure reveals the
contributions of various features to the final prediction of 1541.17,
starting from a base value of 1660. The theoretical maximum specific
gravity (Gmm) at 2.654 significantly lowered the prediction, pulling it
down to 2449, indicating a strong negative impact on stability. Other
features, such as Gsb (3.017), GSE (2.748), and the bitumen content by
weight of mix (3.5%), also contributed to reducing the stability pre-
diction. Conversely, the CA/FA ratio of 1.273 slightly increased the
predicted stability. Overall, the plot highlights that while multiple fac-
tors collectively reduced the predicted MS, Gmm had the most sub-
stantially negative influence, providing insights into which factors need
adjustment to enhance stability.

Fig. 12 shows the SHAP plot for predicting MF. The figure demon-
strates the influence of various features on the prediction, starting from a
base value of 2.655 and resulting in a predicted value of 2.34. Va, at 3.7,
had a significant negative impact, reducing the prediction to 2.34. Other
features, including CA/FA at 0.5214, Gse at 2.551, Gmb at 2.327, f/fb at
1.1, Gsb at 2.507, and VMA at 14.3, all contributed to further decreasing

the MF prediction. The plot highlights that Va is the most influential
factor negatively impacting the predicted MF, while the other factors
also contributed to the overall reduction, though to a lesser extent.
Understanding these contributions is crucial for adjusting the mix design
to achieve the desired MF characteristics.

The successful application of machine-learning models, including
CatBoost, LightGBM, XGBoost, and ExtraTrees, for predicting MS and
MF produces a promising framework for enhancing the efficiency of
pavement design processes. These models yield highly accurate pre-
dictions, thereby reducing reliance on time-intensive and costly labo-
ratory tests traditionally required for asphalt mix design. By employing
these models, engineers and decision-makers can preselect design vari-
ables with increased confidence, thus streamlining the mix design pro-
cess and minimizing the necessity for repetitive testing. This approach
may result in cost reductions and shortened project timelines, as well as
facilitate sustainable construction practices through the optimization of
resource utilization. The explainable machine-learning techniques
employed, such as SHAP analysis, also provide insights into the influ-
ence of various mix parameters, enabling engineers to make data-driven
decisions when modifying designs or investigating performance failures.

These machine-learning models can be integrated into current
pavement design and maintenance practices through incorporation into
existing pavement management systems (PMS). By automating the
prediction of asphalt mix performance, engineers can expeditiously
evaluate various design scenarios and identify optimal solutions with
minimal manual intervention. Furthermore, by integrating these models
into the design phase, real-time feedback can be provided during con-
struction to assess material performance, allowing for on-site adjust-
ments to optimize pavement quality and longevity. In maintenance
practices, these models can be utilized to forecast pavement deteriora-
tion and predict the timing of necessary repairs or overlays, enabling
more proactive and data-driven maintenance scheduling.

A significant limitation of machine-learning models is their depen-
dence on the quality and quantity of data. The accuracy of predictions is
contingent on the availability of high-quality, representative datasets.
Consequently, the application of these models may be constrained in
regions where historical data on pavement performance are limited or
inconsistent. Moreover, given that the data utilized in this study were
collected from projects in Jordan, there may be challenges in general-
izing the findings to other geographic regions with distinct environ-
mental conditions, traffic loads, or material sources.

4. Conclusions and discussion

In this study, several artificial intelligence techniques were
embedded and pretrained using the PyCaret library in Python to predict
the MS and MF of different asphalt mixes. These techniques included
LightGBM, XGBoost, ExtraTree, and gradient boosting. The databases

Fig. 8. SHAP: (a) Marshall Stability, (b) Marshall Flow.
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for MS and MF were constructed from an extensive collection of results
from numerous road-construction mixes across Jordan. The CatBoost
regression model achieved high R2 values of 0.793 and 0.845 for MS and
MF, respectively, confirming its robustness and reliability. The SHAP
values highlighted the critical roles of Gmm and Va, among other fea-
tures, in influencing the predictions, thereby providing valuable insights
for optimizing mix designs. The findings reveal that Gmm had the most

considerable negative impact on MS, pulling the prediction down to
2449 from a base value of 1660. Similarly, Va significantly reduced MF
predictions to 2.34 from a base value of 2.655. These insights are crucial
for making informed adjustments to mix designs, ultimately promoting
sustainable construction practices by reducing the need for extensive
laboratory testing and improving the efficiency of the mix design
process.

Fig. 9. Interdependencies Relationship for the Predicted MS and the Five Most Important Features.
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Fig. 10. Interdependency Relationships for the Predicted MF and the Five Most Important Features.

Fig. 11. SHAP Values for Marshall Stability Prediction.
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4.1. Limitations

Despite its promising results, this study has several limitations. The
dataset, although comprehensive, is specific to construction projects in
Jordan, which may limit the generalizability of the findings to other
regions with different climatic conditions and for other material prop-
erties. Additionally, the study focuses on the CatBoost regression model;
while this model showed superior performance, exploring other
advanced machine-learning models could provide further improve-
ments. The reliance on historical data also implies that any changes in
material sources or testing boundaries could affect the model’s accuracy,
necessitating continuous updating and validation.

4.2. Future work

Future work should aim to address these limitations by expanding
the dataset to include diverse geographical regions and varying envi-
ronmental conditions, ensuring broader applicability of the model.
Exploring other advanced machine-learning algorithms, such as deep-
learning models, could further enhance prediction accuracy. Inte-
grating real-time data could also improve the model’s responsiveness to
changes in material properties and testing conditions. Additionally,
developing user-friendly software tools based on these models can
facilitate their adoption in the field, providing practitioners with easy
access to predictive insights and optimizing the mix design process.
Finally, conducting longitudinal studies to validate the long-term per-
formance of the predicted mix designs in real-world conditions would
further strengthen the findings and their practical relevance.
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