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A B S T R A C T

The primary challenge in utilizing acidic aggregates in bitumen mixtures lies in enhancing the 
adhesive bond between the bitumen and the acidic aggregates. In this manuscript, to investigate 
the adhesion of different geopolymer modified bitumen with acidic aggregates, fly ash geo-
polymer (FG), fly ash- ground granulated blast furnace geopolymer (SFG), and ground granulated 
blast furnace (SG) were prepared by fly ash (FA), ground granulated blast furnace (GGBFS) with 
alkali activator. The different geopolymers were characterized with SEM, XRD, FTIR. Different 
geopolymer modified bitumen was prepared by adding geopolymers into virginal bitumen. The 
conventional properties, viscosity, and rheological properties of modified bitumen were measured 
and analysed. The adhesion of bitumen to acidic aggregates was tested by Zeta potential test, the 
improved boiling water test and pull-off test. The results showed that the electronegativity of 
bitumen and acidic aggregates were weakened significantly by Na+ in skeletal structure of fly ash 
geopolymer. The high temperature stability of fly ash geopolymer modified bitumen was 
improved and the bond strength of bitumen with acidic aggregates increased remarkably with the 
addition of 9 % fly ash geopolymer.

1. Introduction

Bitumen mixtures are composite materials consisting of bitumen, coarse aggregates, fine aggregates and fillers [1,2]. Alkaline 
aggregates and neutral aggregates are often used in bitumen mixtures, while acidic aggregates are not used in bitumen mixtures due to 
their poor adhesion to bitumen [3,4]. The demand for sand and gravel resources for infrastructure construction is increasing with the 
acceleration of global urbanization, and there is a shortage of alkaline and neutral aggregates, while acidic aggregates with high 
strength and excellent abrasion resistance have a wide range of application prospects in bitumen mixtures [5–7]. Therefore, it is a focus 
of current research in road engineering to improve the adhesion of bitumen to acidic aggregates and reduce the water stability of 
bitumen mixture [8,9].

The application of amine anti-stripping additives has become an effective measure to enhance the adhesion between bitumen and 
acidic aggregates in recent years. Polar molecules in the anti-stripping additives combine with acidic aggregates, and non-polar 
molecules combine with bitumen, which can improve the adhesion between bitumen and acidic aggregates effectively [9–11]. In 
addition, it has been found that wrapping aggregates with cement, slaked lime and substituting fillers in bitumen mixtures can 
effectively enhance the adhesion of bitumen to acidic aggregates [12–15]. However, amine anti-stripping additives are easily 
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decomposed at high temperature and slaked lime in bitumen mixtures expands easily under the attack of water, in addition that the 
efficiency of wrapping acidic aggregates with cement and slaked lime is low [16,17]. Geopolymer has a broad application prospect in 
construction and transportation as a new and environmentally friendly inorganic cementitious material [18]. Sri Atmaja P. Rosyidi 
et al. [19] prepared geopolymer modified bitumen by adding fly ash geopolymer to bitumen, and the study found that fly ash geo-
polymer modified bitumen has reduced the contact angle with aggregates and the adhesion between bitumen and aggregates has 
improved. Meng et al. [20] added geopolymer which was prepared by metakaolin, ground granulated blast furnace, and silica fume to 
bitumen, the study indicated that the addition of geopolymer into bitumen improved the adhesion of bitumen to aggregates. Therefore, 
geopolymer has great application prospects in bitumen mixture.

Geopolymer is a new inorganic cementitious material obtained by industrial solid wastes such as fly ash (FA), ground granulated 
blast furnace powder (GGBFS), silica fume (SF) and metakaolin (MK) under the activation of alkali medium [21–23]. The reaction 
products of geopolymer are different due to the different raw materials. Low calcium fly ash, metakaolin, etc. form N-A-S-H gel (NaOH, 
sodium silicate solution alkali activator) and K-A-S-H gel (KOH alkali activator) with the addition of alkali activator, while ground 
granulated blast furnace powder and high calcium fly ash form C-(A)-S-H gel [24–27].

Different products of geopolymer reaction have different effects on the properties of geopolymer modified bitumen. This work 
investigates the effect of different reaction products of geopolymer on the adhesion of bitumen to acidic aggregates, providing support 
for the application of acidic aggregates in bitumen mixtures.

2. Materials and methods

2.1. Materials

2.1.1. Geopolymer
Fly ash geopolymer (FG), fly ash and ground granulated blast furnace geopolymer (SFG), and ground granulated blast furnace 

geopolymer (SG) were prepared by mixing FA and GGBFS with alkaline activator and water respectively, in which the alkaline 
activator is made by mixing water glass, sodium hydroxide and water. FA (I) and GGBFS (S95) are provided by Longze Water Puri-
fication Materials Co., Ltd. (Henan, China) and the chemical composition of GGBFS and FA is shown in Table 1. Water glass is liquid 
sodium silicate (Na2O:8.3 %, SiO2:26.5 %) produced by Shandong Yousuo Chemical Technology Co., Ltd. Sodium hydroxide (NaOH ≥
96 %) was supplied by Tianjin Hengxing Reagent Co., Ltd.

2.1.2. Aggregates
Acidic aggregates are granite aggregates provided by Zhejiang Communications Resources Investment Group Co., Ltd. (Zhejiang, 

China), and the chemical composition of the aggregate is shown in Table 1.

2.1.3. 2.1.3 Bitumen
70# virginal bitumen was provided by Zhejiang Communications Resources Investment Group Co., Ltd. (Zhejiang, China). The 

conventional properties of bitumen are displayed in Table 2 and conform to the Chinese specification JTG E20–2011.

2.2. Geopolymer: preparation and tests

2.2.1. Geopolymer preparation
FG, SFG, and SG were prepared by FA and GGBFS. Fig. 1 shows the preparation of geopolymer additives.
(1) 3.70 g sodium hydroxide and 36.30 g sodium silicate (water glass modulus: 1.4) were mixed and dissolved to obtain an alkali 

activator.
(2) FA and GGBFS were weighed in the proportion (FA: GGBFS=100:0; FA: GGBFS=30:70; FA: GGBFS=0:100) of 100 g and mixed 

with 40 g of alkali activator and 10 g of water (liquid to solid ratio of 0.5), to obtain the geopolymer slurry, which was poured into the 
molds and covered with plastic film.

(3) Geopolymer was cured at ambient temperature for 24 h and then demolded and placed in the standard curing room (tem-
perature: 20±2℃, humidity: ≥95 %) for curing until 72 h.

(4) The geopolymer was milled into particles leaving particles smaller than 75 µm. The particles were dried at 200℃ for 4 h to 
reduce the effect of moisture on the adhesion of modified bitumen to acidic aggregates.

2.2.2. Scanning electron microscopy (SEM)
SEM can characterize the microscopic morphology of materials [28]. The microscopic morphology of FG, SFG and SG was 

Table 1 
Chemical composition of raw materials.

Chemical composition SiO2 Al2O3 CaO SO3 Fe2O3 K2O MgO Na2O

GGBFS/% 34.50 17.70 34.50 1.64 1.03 - 6.01 -
FA/% 53.97 31.15 4.01 0.73 4.16 - 1.01 -
Granite/% 65.26 18.58 4.96 - 2.84 2.96 4.00 1.40

W. Du et al.                                                                                                                                                                                                             Case Studies in Construction Materials 21 (2024) e03850 

2 



compared and analyzed using SEM manufactured by ZEISS (Germany).

2.2.3. X-ray diffractometry (XRD)
XRD can analyze the physical phase of materials [29]. The physical phase composition of FG, SFG, and SG was analyzed using an 

X-ray diffractometer manufactured by Shimadzu (Japan) with scanning speed of 5º/min and scanning angles 10º-90º.

2.2.4. Fourier transform infrared spectroscopy (FTIR)
FG, SFG, and SG were analyzed using a Fourier infrared spectrum analyzer manufactured by Nicolet (American) with a scanning 

range of 400 cm− 1 to 4000 cm− 1.

2.2.5. Zeta potential
The Zeta potential of geopolymer (FG, SFG and SG) at different pH values were employed by a NanoPlus particle analyzer 

(American). 1.0 g geopolymer (FG, SFG and SG) was added to solutions and solutions of different pH values (3, 5, 7, 9, 11) were 
prepared by adding NaOH and HCl to deionized water.

2.3. Geopolymer modified bitumen: preparation and tests

2.3.1. Geopolymer modified bitumen preparation
The 70# virginal bitumen was kept at 135℃ for 1.5 h, then the particles of geopolymer (3 %, 6 %, 9 %, 12 % of the bitumen mass) 

Table 2 
Properties of 70# virginal bitumen.

Property Unit Result Technical requirements Test

Penetration dmm 67 60–80 T0604
Ductility cm 22.6 ≥20 T0605
Softening point ℃ 48.0 ≥46 T0606
Density g/cm3 1.037 1.01 T0603

Fig. 1. Preparation of geopolymer additives.

Table 3 
Blending ratios and labels of different modified bitumen.

Types Additives Label The ratio of additives to the weight of bitumen

FMB FG F3 3 %
F6 6 %
F9 9 %
F12 12 %

SFMB SFG SF3 3 %
SF6 6 %
SF9 9 %
SF12 12 %

SMB SG S3 3 %
S6 6 %
S9 9 %
S12 12 %
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were added to bitumen and stirred with a high-speed shearer (2000r/min, 30 min). Geopolymer modified bitumen was obtained by 
cooling at ambient temperature. Blending ratios and labels of different modified bitumen are shown in Table 3.

2.3.2. Conventional properties of bitumen
The penetration, softening point, ductility and viscosity at 135℃ of geopolymer modified bitumen were tested, following the 

Chinese specification JTG E20–2011.

2.3.3. Rheological properties of bitumen
The rheological properties of bitumen were tested using temperature sweep. The test temperature was 46–82◦C with a temperature 

gradient of 6◦C, and the frequency was 1.59 Hz.

2.3.4. Boiling water test
The adhesion of acidic aggregates to bitumen was tested using the improved boiling water test due to the ambiguous temperature of 

the traditional boiling water test [30]. Firstly, the bitumen was wrapped around the acidic aggregates which were kept immersed in 
heated bitumen (163◦C) for 45 s. Then, the acidic aggregate wrapped with bitumen was cooled at ambient temperature for 15 min. 
Finally, the acidic aggregates wrapped with bitumen were immersed in the same depth of water (90◦C±1℃) for the improved boiling 
water test with 3 minutes. Fig. 2 displays the process of boiling water test.

Acidic aggregates were photographed by a camera. The pictures were imported into the software of “Photoshop” and the areas of 
stripping bitumen on the aggregate surface were covered with “red” (Fig. 2 (C) shows before and after treatment of acidic aggregates). 
In addition, the stripping area was selected using “Image recognition” (Fig. 2(D)), and the number of pixels in the stripping area was 
obtained using the “Histogram” function (number of pixels in the red area in Fig. 2(E)). And based on the ratio of pixels of the stripping 
area to the acidic aggregate, the stripping area of bitumen could be accurately obtained.

2.3.5. Pull-off test
The pull-off test was carried out to evaluate the adhesion of bitumen to acidic aggregates [31]. A granite cube of 

40 mm×40 mm×40 mm was used for the pull-off test. According to the relationship between bitumen and film thickness of bitumen, 
bitumen was applied to the granite cube and a certain pressure was applied to the granite cube to ensure the bitumen film thickness 
between the two granite cubes was 200 µm, and removed the excess bitumen. The samples of the pull-off test were cooled at ambient 
temperature for 24 hours to be used [32]. Fig. 3 shows samples preparation and test procedures of pull-off test.

Fig. 2. The process of boiling water test. (A: Boiling water test, B: Aggregates after boiling water test, C: Image processing, D: Colour recognition, E: 
Pixels of different colours).
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3. Results and discussion

3.1. Characteristics of geopolymer

3.1.1. SEM
Fig. 4 shows the microstructural image of FG, SFG, and SG. As can be seen from Fig. 4 (A) (D), a large amount of N-A-S-H gel was 

generated on the surface of FA particles with the addition of alkali activator [33]. It can be seen from Fig. 4 (B) (E) that FA and GGBFS 
particles were wrapped with C-(A)-S-H gel and N-A-S-H gel when FA and GGBFS reacted with alkali activator. However, the gel in 
Fig. 4 (B) (E) is dominated by N-A-S-H gel, with relatively few C-(A)-S-H gel, due to the decomposition of C-(A)-S-H gel under high 
temperature [34]. As can be seen from Fig. 4 (C) (F), GGBFS particles generated C-(A)-S-H gel in the presence of alkali activator, and 
the residual granular C-(A)-S-H gel wrapped with GGBFS particles due to the decomposition under high temperature [35]. In contrast 
to FG, SFG, and SG, C-(A)-S-H gel decreased and the surface of geopolymer particles became smooth with the increasing content of 
GGBFS.

3.1.2. XRD
Fig. 5 shows the XRD pattern of FG, SFG, and SG. As can be seen from Fig. 5, there is a diffuse peak between 20̊ and 40̊. The main 

components of FA are SiO2 and Al2O3, which produce N-A-S-H gel with the addition of alkali activator. FA contains quartz, mullite, and 
corundum which are considered to be inert and unreacted in the alkaline environment [33,36]. C-(A)-S-H gel was generated in the 
presence of alkali activator due to GGBFS containing CaO and Al2O3, as a result, SFG and SG appeared amorphous substances on the 
XRD pattern and did not show significant diffraction peaks.

3.1.3. FTIR
Fig. 6 displays the FTIR spectra of FG, SFG, and SG. The peaks at 3200 cm-1–3600cm− 1 were caused by stretching vibration of OH-, 

which can reflect the degree of reaction of the geopolymer [37]. A bending vibrational peak of H-O-H at 1629 cm− 1 indicates that 
water is in geopolymer. The peak at 1400 cm− 1 was related to C––O indicating carbonation of the alkali activator which reacted 
incompletely [38]. There was asymmetric stretching vibration at 900 cm− 1-1250cm− 1, which was mainly due to the hydration 
products of geopolymer [39]. The peak at 462 cm− 1 was related to the bending vibration and stretching vibration of the TO4

2- tetra-
hedron (T=Si or Al) [40].

3.2. Performance of modified bitumen

3.2.1. Conventional performances of modified bitumen
Fig. 7 shows the conventional properties of modified bitumen ((A): Penetration, (B): Softening point, (C): Ductility, (D): Viscosity at 

135℃). As can be seen from Fig. 7, the conventional properties of modified bitumen changed significantly with the addition of 
geopolymer. A stable network structure was formed in the bitumen when the geopolymer was added to the bitumen, which restricted 
the movement of the bitumen molecular chains. As a consequence, the bitumen hardened and the plasticity increased. The penetration 
and ductility of FMB were lower than SFMB and SMB and the softening point was higher than SFMB and SMB when the addition of 
geopolymer was 3 %. However, with the increase of geopolymer addition, there was no significant difference in penetration, ductility, 

Fig. 3. Pull-off test: samples preparation and test procedures. (A: Samples preparation, B: Samples, C: Fixture, D, E: Testing, F: Fracture surfaces).
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Fig. 4. SEM images of geopolymer samples. FG: (A), (D); SFG: (B); (E); SG: (C), (F).

Fig. 5. XRD patterns of samples.

Fig. 6. FTIR spectrum of geopolymer samples. (T=Si or Al).
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and softening point. It can be seen from Fig. 4(D) that the viscosity of modified bitumen at 135℃ gradually increased with the 
increasing addition.

FA and GGBFS generated a large amount of C-(A)-S-H gel and N-A-S-H gel when the alkali activator was added. The C-(A)-S-H gel 
and N-A-S-H gel were wrapped on the surface of FA and GGBFS particles, which increased the specific surface area of geopolymer. 
When the geopolymer was added to the bitumen, the surface of geopolymer absorbed a large amount of bitumen and formed structural 
bitumen, the free bitumen decreased [41]. Therefore, the fluidity of the modified bitumen decreased and the plasticity increased. The 
penetration and ductility of geopolymer modified bitumen decreased significantly, and the softening point and viscosity increased with 
the increasing dosage of geopolymer. The high temperature performance of modified bitumen increased and the low temperature 
performance decreased significantly [42].

3.2.2. Rheological properties of modified bitumen
Complex modulus (G*), phase angle (δ), and rutting factor are shown in Fig. 8, Fig. 9, and Fig. 10 for FMB, SFMB, and SMB 

respectively.
The complex modulus (G*) of modified bitumen are displayed in Fig. 8. The complex modulus of modified bitumen increased with 

the increasing addition, in addition, the complex modulus gradually decreased and tended to zero with the increasing temperature. 
This indicates that the ability to resist deformation increases when geopolymer is added to bitumen.

The phase angle of modified bitumen reflects the relative values of viscous and elastic deformation in modified bitumen [43]. Fig. 9
shows that the phase angle of modified bitumen decreases significantly compared to virginal bitumen and increases with increasing 
temperature. This indicates that the viscous proportion of bitumen decreases, the elastic percentage increases, and the irrecoverable 
deformation of the bitumen to resist loading decreases with the addition of geopolymer.

The rutting factor of modified bitumen was calculated according to rutting factor = G*/sinδ [44]. Fig. 10 shows the rutting factor of 
modified bitumen. As can be seen from Fig. 10, the rutting factor of bitumen increased with the increasing geopolymer and decreased 
with the increasing temperature [43].

3.2.3. FTIR
Fig. 11 displays the FTIR spectra of bitumen. The FTIR spectra of bitumen did not change significantly with the addition of FG, SFG, 

Fig. 7. Properties of modified bitumen.
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and SG. This suggests that the addition of geopolymer to bitumen is mainly physical blending accompanied by weak chemical reactions 
[20].

3.3. Adhesion of bitumen to aggregates

3.3.1. Zeta potential
Fig. 12 displays the Zeta potential of FG, SFG and SG at different pH values. The Zeta potential of FG was negative (-10.51 mv) at 

pH=3 and decreased gradually with the increasing pH. When pH=3, the Zeta potential of SFG and SG were positive (SFG: 0.31 mv, SG: 
2.62 mv). The Zeta potential of SFG and SG were − 23.42 mv and − 20.67 mv respectively, which indicated that there was an isoelectric 
point at 3 < pH < 5, where the dispersion of SFG and SG was poor. The absolute value of Zeta potential is FG > SFG > SG when pH < 7, 
which indicates that FG particles have better dispersion in asphalt.

When the alkaline activator was mixed with FA and GGBFS, the Al-O and Si-O covalent bonds in FA and GGBFS were broken and 
formed [AlO4]4- tetrahedra and [SiO4]4- tetrahedra, and formed a three-dimensional network gel through condensation reactions [45]. 
In the atomic skeletal structure, metal cations (Na+, Ca2+) existed to balance the negative charges in the skeletal structure of geo-
polymer and promote the formation of N-A-S-H gel and C-(A)-S-H gel [46]. Nevertheless, there was a large amount of CaO in GGBFS 
reacted rapidly to form Ca(OH)2 and C-(A)-S-H gel, which wrapped around the surface of FA and GGBFS particles, blocking the 
dissolution of reactive Al2O3 and SiO2, and affecting the progress of geopolymer reaction and the formation of N-A-S-H gel when alkali 
activator was mixed with GGBFS [47,48]. Hence, the amount of N-A-S-H gel in different geopolymer was FG > SFG > SG. Furthermore, 
the N-A-S-H gel in FG had excellent high temperature stability, however, the C-(A)-S-H gel in SFG and SG was easily decomposed at 
high temperatures [49–51]. Therefore, the C-(A)-S-H gel in SFG and SG decomposed during high temperature dehydration, the amount 
of Ca2+ decreased, whereas the N-A-S-H gel did not decompose easily and the amount of Na+ remained constant [52–54]. 

Fig. 8. Complex modulus of modified bitumen.
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Consequently, the number of metal cations contain in the geopolymer was FG > SFG > SG.
The Zeta potential of bitumen and acidic aggregates is negative, and hence the adhesion of bitumen to acidic aggregates is weak. 

The mental cations (Na+, Ca2+) in geopolymer bound to the negative charges in the asphalt and acidic aggregates through electrostatic 
forces, compressing the double electric and decreasing the electronegativity of the bitumen to the acidic aggregates when FG, SFG, and 
SG are added to the bitumen [55]. Furthermore, a large quantity of FG particles was wrapped around the surface of acidic aggregates 
when acidic aggregates was immersed in FMB, and the N-A-S-H gel on the surface of FG particles bonded to bitumen tightly by 
Coulomb force. As a result, the adhesion of bitumen to acidic aggregates was enhanced. C-(A)-S-H gel in SFG and SG decomposed at 
high temperature and the amount of Ca2+ decreased dramatically, FG contained more metal cations compared to SFG and SG, thus the 
reduction of electronegativity of bitumen with acidic aggregates was more pronounced. Therefore, the addition of FG improved the 
adhesion of bitumen to acidic aggregates better.

3.3.2. Boiling water test
The adhesion between modified bitumen and acidic aggregates reflects the mechanical properties of bituminous mixtures [56]. The 

improved boiling water test and the pull-off test were conducted to analyze the adhesion of different modified bitumen with acidic 
aggregates.

Fig. 13 shows the results of the improved boiling water test. Table 4 shows the adhesion area of modified bitumen to acidic ag-
gregates. In Fig. 13 and Table 4, the adhesion between virginal bitumen and acidic aggregates is poor. This is due to virginal bitumen 
stripped with acidic aggregates under the attack of water, as the acidic aggregates contained a large amount of SiO2, which adsorbed 

Fig. 9. Phase angle of modified bitumen.
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water easily. The adhesion of bitumen to acidic aggregates increased significantly with the addition of geopolymer. When the dosage 
was 9 %, FMB, SFMB, and SMB had the most adhesion area with acidic aggregates of 94.27 %, 91.98 % and 91.25 %, respectively, and 
the adhesion area was enhanced by 126.61 %, 121.11 % and 119.35 % compared to the virginal bitumen, respectively. When the 

Fig. 10. Rutting factor of modified bitumen.

Fig. 11. FTIR spectrum of bitumen.
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geopolymer was added to the bitumen, C-(A)-S-H gel and N-A-S-H gel contained in FG, SFG, and SG adsorbed the bitumen. In addition, 
the carboxyl (-COOH) in bitumen lost hydrogen atoms and combined with metal cations (Na+, Ca2+) in geopolymer to form asphaltene 
that was insoluble in water and distributed on the surface of the acidic aggregates, which enhanced the adhesion of the modified 
bitumen to the acidic aggregates [42]. However, the adhesion area of modified bitumen to acidic aggregates decreased when the 
dosage of geopolymer was 12 %. This was due to the many geopolymer particles and the bitumen was not enough adsorbed on the 
surface of geopolymer particles [57].

According to the results of the improved boiling water test, the adhesion area of different bitumen is FMB > SFMB > SMB. This 
suggests that N-A-S-H gel in FG can enhance the adhesion of bitumen to acidic aggregates remarkably compared to C-(A)-S-H gel.

3.3.3. Pull-off test
Fig. 14 displays the load-displacement curves of pull-off test for FMB, SFMB, and SMB. Table 5 shows the fracture energy results 

from FMB, SFMB, and SMB. The load-displacement curves were divided into two phases “rise-decline”. When the displacement 
increased, the load rose sharply and the specimen broke when the load reached the maximum destructive force. Then, the curves 
decreased sharply and the load was close to zero.

The area enclosed by load-displacement curves was the fracture energy of the specimen and the fracture energy of different curves 
was calculated by Origin. Table 5 shows that the fracture energy of FMB, SFMB, and SMB with acidic aggregates increases gradually 
with increasing dosage and reaches the maximum fracture energy at 9 % with the magnitude of FMB > SFMB > SMB. This was because 
N-A-S-H gel in FG did not decompose while C-(A)-S-H gel in SFG and SG decompose easily at high temperature. Therefore, FG con-
tained more metal cations (Na+) which weakened the electronegativity of bitumen and acidic aggregates and enhanced the adhesion of 
bitumen and acid aggregates. When dosage of geopolymer was 12 %, the content of geopolymer was relatively high. There was not 
enough bitumen to be adsorbed by the geopolymer, resulting in relatively little structural bitumen. Moreover, too much geopolymer 
added to bitumen tended to clump. Therefore, the adhesion of bitumen to acidic aggregates decreased with 12 % geopolymer dosage.

Fig. 15 shows the fracture surface of pull-off test. Cohesive failure means that the adhesive force between bitumen and aggregates is 
more than the cohesive force, and the failure internally; the adhesive failure means that the adhesive force between bitumen and 
aggregates is less than the cohesive force, and the failure at the interface of bitumen and aggregates [32,58]. From Fig. 12, virginal 
bitumen with acidic aggregates showed adhesive failure in fracture surface which reduced the fracture energy in pull-off test. How-
ever, the fracture surface was dominated by cohesive failure when geopolymer was added to virginal bitumen.

3.4. Analyses of cost and environment

At present, the following methods are used for the application of acidic aggregates in asphalt mixtures. (1) Cement is used to replace 
the mineral powder in the asphalt mixtures. (2) Anti-stripping agent (amine anti-spalling agent) are added to the bitumen. The 
addition of geopolymer to bitumen improves the adhesion of bitumen to acidic aggregates and reduces costs compared to conventional 
methods. Table 6 displays the overview of Anti-stripping agent, the cost of anti-stripping agent added per 1 t of asphalt mixtures. In 
addition, the production of cement generates large quantities of air pollutants (particulate matter, nitrogen oxides, SO2), as well as vast 
quantities of greenhouse gases (CO2). Amine anti-stripping agents require chemical synthesis. The production of geopolymer from 
solid waste (GGBFS, FA) reduces the emissions CO2 by about 80 % compared to cement production [59]. Therefore, the enhancement 
of bitumen adhesion to acidic aggregates by addition geopolymer is economically and ecologically.

4. Conclusions

The adhesion of different modified bitumen (FMB, SFMB, and GMB) with acidic aggregates was investigated in this study. The 
following conclusions can be drawn based on the above results:

Fig. 12. Zeta potential of geopolymer at different pH values.
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Fig. 13. Results of the boiling water test for modified bitumen and acidic aggregates.

Table 4 
Adhesion area of modified bitumen to acidic aggregates tested by the boiling water test.

Dosage 0 % 3 % 6 % 9 % 12 %

FMB 41.60 % 87.44 % 91.42 % 94.27 % 90.73 %
SFMB 86.10 % 89.75 % 91.98 % 88.17 %
SMB 85.58 % 90.63 % 91.25 % 87.15 %
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(1) The addition of alkali activator to FA and GGBFS promoted the formation of geopolymer. A large amount of C-(A)-S-H gel and N- 
A-S-H gel wrapped around the surface of FA and GGBFS particles were characterized by microscopic.

(2) The addition of geopolymer to bitumen improved the high temperature stability while low temperature performance decreased. 
The softening point and viscosity increased and the ductility and penetration decreased significantly.

(3) Na+ in skeletal structure of FG weakened the electronegativity of bitumen with acidic aggregates. The adhesion of bitumen to 
acidic aggregates enhanced significantly after the improved boiling water test and pull-off test. The magnitude of bond strength be-
tween different bitumen and acidic aggregates were FMB > SFMB > SMB > virginal bitumen.

(4) The addition of geopolymer to bitumen to enhance the adhesion of bitumen to acidic aggregates has enormous economic and 
environment value.

To further improve the universality of this study, the adhesion of geopolymer modified bitumen with different acidic aggregates 
will be analysed. Moreover, the pavement performance and durability of geopolymer modified asphalt mixtures with acidic aggregates 

Fig. 14. Load-displacement curves of different modified bitumen.

Table 5 
Fracture energy results from different modified bitumen (N⋅mm).

Dosage 0 % 3 % 6 % 9 % 12 %

FMB 725.85 1866.88 2712.38 3076.70 2577.70
SFMB 1519.83 1961.71 2565.00 2408.56
SMB 1489.26 2164.50 2325.49 2026.92
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Fig. 15. Fracture surface of pull-off test.

Table 6 
Overview of Anti-stripping agent (Average price in market).

Additives Preparation State Cost

Geopolymer Alkali activation Solid (powder) $1.44–2.07
Cement Synthesis Solid (powder) $1.08–2.70
Amine antistripping agents Synthesis Liquid $4.02–6.34
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will be explored in future research.
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